본문 바로가기
728x90

머신러닝3

RNN Applications & Limitations(RNN 응용 사례 및 한계) 지금까지 RNN의 기본인 작동원리와 아키텍처, 학습 방법, 적용 분야 등을 살펴보았습니다. 이 세션의 마지막 부분에서는 소프트웨어 랩에서 RNN을 실제로 활용하는 구체적인 예시를 살펴보겠습니다.뮤직 제너레이션먼저 RNN을 사용하여 멜로디를 생성하는 뮤직 제너레이션 과제를 다룬다면, RNN은 시퀀스 데이터에서 다음 요소를 예측하는데 효과적이며, 이를 활용하여 완전히 새로운 멜로디를 만들 수 있다. 실제 사례: 슈베르트의 미완성 교향곡 3번몇년 전 연구팀 RNN 모델을 클래식 음악 데이터로 학습시켰다. 유명 슈베르트는 두 악장으로 구성된 미완성 교향곡을 남겼다. 불행히도 그는 교향곡을 완성하지 못한 채 세상을 떠났다. 연구팀은 학습된 RNN모델을 사용하여 기존의 두 악장 정보를 바탕으로 미완성된 제3악장을 .. 2024. 6. 17.
머신 러닝 워크 플로우 1. 수집(Acquisition) 머신 러닝을 하기 위해서는 기계어 학습 시켜야 할 데이터가 필요하다. 자연어 데이터를 코퍼스(corpus)라고 하는데, 코퍼스란 조사나 연구 목적에 의해서 특정 도메인으로부터 수집된 텍스트 집합을 말한다.(txt파일, csv파일, xm파일) 2. 점검 및 탐색(Inspection and exploration) 데이터가 수집되었다면, 여기서는 점검하고 탐색하는 단계 거친다. 데이터의 구조, 노이드 데이터, 머신 러닝 적용을 위해서 데이터를 어떻게 정제해야 하는지 등을 파악한다. 이 단계에서는 탐색적 데이터 분석 단계(Exploratory Data Analysis, EDA)단계라고도 하는데 이는 독립 변수, 종속 변수, 변수 유형, 변수의 데이터 타입 등을 점검하며 데이터의.. 2023. 12. 22.
딥 러닝, 머신러닝, 인공지능 딥러닝, 머신러닝, 인공지능 이들의 관계 인공지능 = 머신러닝 + 딥러닝 딥러닝 숨겨져 있는 특징들을 찾아내어 복잡한 문제를 풀 수 있도록 설계하는 것 (뉴런 네트워크) 머신러닝 뉴런 네트워크를 활용해서 조금 더 상위차원의 문제를 푸는 것(극소 패턴 추가, 새로운 알고리즘 추가) 인공지능 머신러닝의 알고리즘을 활용해서 고차원적인 문제를 푸는 것 러닝의 4가지 종류 1. 지도 학습(Supervised Learning) 컴퓨터가 훈련 데이터에 있는 패턴을 학습하여 새로운 데이터에 대한 예측을 수행하는 머신 러닝의 한 분야 Input (이미지, 텍스트) -> Encoder(특징 찾기) -> Feature -> Decoder(정답도출) -> Output(분류, 회귀, 연관성) Output(분류, 회귀, 연관성).. 2023. 12. 16.
728x90