728x90 and Attention4 RNN Applications & Limitations(RNN 응용 사례 및 한계) 지금까지 RNN의 기본인 작동원리와 아키텍처, 학습 방법, 적용 분야 등을 살펴보았습니다. 이 세션의 마지막 부분에서는 소프트웨어 랩에서 RNN을 실제로 활용하는 구체적인 예시를 살펴보겠습니다.뮤직 제너레이션먼저 RNN을 사용하여 멜로디를 생성하는 뮤직 제너레이션 과제를 다룬다면, RNN은 시퀀스 데이터에서 다음 요소를 예측하는데 효과적이며, 이를 활용하여 완전히 새로운 멜로디를 만들 수 있다. 실제 사례: 슈베르트의 미완성 교향곡 3번몇년 전 연구팀 RNN 모델을 클래식 음악 데이터로 학습시켰다. 유명 슈베르트는 두 악장으로 구성된 미완성 교향곡을 남겼다. 불행히도 그는 교향곡을 완성하지 못한 채 세상을 떠났다. 연구팀은 학습된 RNN모델을 사용하여 기존의 두 악장 정보를 바탕으로 미완성된 제3악장을 .. 2024. 6. 17. Backpropagation Through Time(BPTT): 역전파 알고리즘 Recall: Backpropagation in Feed Forward Models 역전파 알고리즘을 사용하여 RNN을 학습하는 방법을 설명하고, 텍스트 분류 문제에서의 예시를 설명하겠습니다. RNN학습 과정(복습... :) ) 1. 데이터 준비: 시퀀스 데이터를 입력 데이터와 출력 데이터로 준비한다. 2. 모델 정의: RNN모델의 구조와 가중치를 정의한다. 3. 순전파: 입력 데이터는 단어 벡터로 변환되고 RNN을 통과한다. RNN은 각 단어를 처리하면서 숨겨진 상태를 업데이트한다. 예) "나는 피자를 좋아한다." 4. 출력 계층: 텍스트 분류 문제의 경우 출력 계층은 입력 문장이 특정 클래스에 속할 확률을 계산한다. 예) "음식" 카테고리에 속할 확률 5. 오류 계산: 네트워크의 예측값과 실제 값 간.. 2024. 3. 25. Recurrent Neural Networks(RNNs) Recurrent Neural Networks(RNNs) 위의 이미지는 RNN의 내부 구조를 보여준다. 입력(x_t), 이전 상태(h_(t-1)), 갱신된 상태(h_t), 출력(y_t) 간의 관계를 나타낸다. 화살표는 정보 흐름을 나타낸다. 순환 신경망(RNN)의 핵심 개념은 내부 상태(h)를 유지 관리하고 시퀸스를 처리하면서 각 시간 단계에서 업데이트한다. 이 업데이트는 재귀 관계를 통해 계산되며, 이 관계는 이전 시간 단계의 정보(h_(t-1))와 현재 입력(x_t)을 모두 고려한다. 이 함수(f_W)는 가중치(W) 집합에 의해 정의되며, RNN이 시계열 데이터를 처리하는 동안 시간 단계마다 동일한 가중치 집합을 사용한다. 텍스트와 이미지 모두 RNN이 내부 상태를 사용하여 시퀸스 데이터를 처리한다는.. 2024. 2. 29. Sequence Modeling(시퀸스 모델링) 시퀀스 데이터 또는 시퀀스 모델링이라는 말을 할 때 정확히 무엇을 의미하는지 예를 들어 설명해 보겠습니다. 공이 움직이는 그림이 있다고 하고 , 이 공이 다음에 어디로 갈지 예측하는 것이 당신의 임무라고 했을 때 만약 공의 궤도, 움직임, 이력에 대한 정보가 전혀 없다면 다음 위치에 대한 어떤 추측이나 예측도 정확히 말하면 무작위 추측일 것이다. 하지만 공의 현재 위치뿐만 아니라 과거 어디로 움직였는지에 대한 정보도 알려준다면 문제가 훨씬 쉬워진다. 이는 정말 단순한 직관적인 예시지만, 시퀀스 데이터와 시퀸스 모델링이라는 개념은 실제 세계의 많은 문제에 적용할 수 있다. 예를 들어, 시계열 데이터(주식 가격, 날씨 데이터)를 예측하거나, 음악을 작곡하거나, 기계 번역을 하거나, 로봇을 제어하는 데 사용할.. 2024. 1. 26. 이전 1 다음 728x90